The promise that genetically modified crops could help feed the world is at least as old as the commercialization of the first transgenic seeds in the mid-1990s. The corporations that helped turn genetically engineered crops into a multibillion-dollar business, including the large chemical companies Monsanto, Bayer, and DuPont, promoted the technology as part of a life science revolution that would greatly increase food production. So far it’s turned out, for a number of reasons, to have been a somewhat empty promise.
To be sure, bioengineered crops are a huge commercial success in some countries. The idea is simple but compelling: by inserting a foreign gene derived from, say, bacteria into corn, you can give the plant a trait it wouldn’t otherwise possess. Surveys estimate that more than 170 million hectares of such transgenic crops are grown worldwide. In the United States, the majority of corn, soybeans, and cotton planted have been engineered with a gene from the soil bacterium Bacillus thuringensis—Bt—to ward off insects or with another bacterial gene to withstand herbicides. Worldwide, 81 percent of the soybeans and 35 percent of the corn grown are biotech varieties. In India, Bt cotton was approved more than a decade ago and now represents 96 percent of the cotton grown in the country.
Yet it’s not clear whether that boom in transgenic crops has led to increased food production or lower prices for consumers. Take corn, for example. In the United States, 76 percent of the crop is genetically modified to resist insects, and 85 percent can tolerate being sprayed with a weed killer. Such corn has, arguably, been a boon to farmers, reducing pesticide use and boosting yields. But little of U.S. corn production is used directly for human food; about 4 percent goes into high–fructose corn syrup and 1.8 percent to cereal and other foods. Genetically modified corn and soybeans are so profitable that U.S. farmers have begun substituting them for wheat: around 56 million acres of wheat were planted in 2012, down from 62 million in 2000. As supply fell, the price of a bushel of wheat rose to nearly $8 in 2012, from $2.50 in 2000.
So far, the short list of transgenic crops used directly for food includes virus-resistant papaya grown in Hawaii, Bt sweet corn recently commercialized in the United States by Monsanto, and a few varieties of squash that resist plant viruses. That list could be about to grow, however. The Indonesian agricultural agency expects to approve a blight-resistant potato soon, and J. R. Simplot, an agricultural supplier based in Boise, Idaho, is hoping to commercialize its own version by 2017. Monsanto, which abandoned an attempt to develop GM wheat in 2004, bought a wheat-seed company in 2009 and is now trying again. And Cornell researchers are working with collaborators in India, Bangladesh, and the Philippines, countries where eggplant is a staple, to make an insect-resistant form of the vegetable available to farmers.
Only a handful of large companies can afford the risk and expense of commercializing GMOs.
These bioengineered versions of some of the world’s most important food crops could help fulfill initial hopes for genetically modified organisms, or GMOs. But they will also almost certainly heat up the debate over the technology. Opponents worry that inserting foreign genes into crops could make food dangerous or allergenic, though more than 15 years of experience with transgenic crops have revealed no health dangers, and neither have a series of scientific studies. More credibly, detractors suggest that the technology is a ploy by giant corporations, particularly Monsanto, to peddle more herbicides, dominate the agricultural supply chain, and leave farmers dependent on high-priced transgenic seeds. The most persuasive criticism, however, may simply be that existing transgenic crops have done little to guarantee the future of the world’s food supply in the face of climate change and a growing population.
The first generation of insect-resistant and herbicide-tolerant crops offer few new traits, such as drought tolerance and disease resistance, that could help the plants adapt to changes in weather and disease patterns, acknowledges Margaret Smith, a professor of plant breeding and genetics at Cornell University. Nonetheless, she says there is no valid reason to dismiss the technology as plant scientists race to increase crop productivity. Scientists are “facing a daunting breeding challenge,” Smith says. “We will need a second generation of transgenic crops. It would be a mistake to rule out this tool because the first products didn’t address the big issues.”
Developing crops that are better able to withstand climate change won’t be easy. It will require plant scientists to engineer complex traits involving multiple genes. Durable disease resistance typically requires a series of genetic changes and detailed knowledge of how pathogens attack the plant. Traits such as tolerance to drought and heat are even harder, since they can require basic changes to the plant’s physiology.
Is genetic engineering up to the task? No one knows. But recent genomic breakthroughs are encouraging. Scientists have sequenced the genomes of crops such as rice, potatoes, bananas, and wheat. At the same time, advances in molecular biology mean that genes can be deleted, modified, and inserted with far greater precision. In particular, new genome engineering tools known as Talens and Crispr allow geneticists to “edit” plant DNA, changing chromosomes exactly where they want.
Exact Edits
The workshop adjacent to the rows of greenhouses at the edge of Cornell’s campus in Ithaca, New York, smells musty and damp from the crates of potatoes. It is less than a mile from the university’s molecular biology labs, but what you see are wooden conveyer belts, wire screens, and water hoses. Walter De Jong is sorting and sizing harvested potatoes as part of a multiyear effort to come up with yet a better variety for the region’s growers. Boxes are filled with potatoes—some small and round, others large and misshapen. Asked what traits are important to consumers, he smiles slyly and says, “Looks, looks, looks.”
The question of how he feels about efforts to develop transgenic potatoes is not as easily answered. It’s not that De Jong is opposed to genetic engineering. As a potato breeder, he’s well versed in conventional methods of introducing new traits, but he also has a PhD in plant pathology and has done considerable research in molecular biology; he knows the opportunities that advanced genetics opens up. In the northeastern United States, a variety of potato is optimized for about a 500-mile radius, taking into account the length of the growing season and the type of weather in the area. Climate change means these growing zones are shifting, making crop breeding like solving a puzzle in which the pieces are moving around. The speed offered by genetic modification would help. But, De Jong says dismissively, “I don’t expect to use [transgenic] technology. I can’t afford it.”
“It’s a curious situation,” he says. Scientists at public and academic research institutions have done much of the work to identify genes and understand how they can affect traits in plants. But the lengthy testing and regulatory processes for genetically modified crops, and the danger that consumers will reject them, mean that only “a handful of large companies” can afford the expense and risk of developing them, he says.
But De Jong suddenly becomes animated when he’s asked about the newest genome engineering tools. “This is what I have been waiting my whole career for,” he says, throwing his hands up. “As long as I have been a potato scientist, I’ve wanted two things: a sequenced potato genome and the ability to modify the genome at will.” Across campus, De Jong also runs a molecular biology lab, where he has identified the DNA sequence responsible for red pigment in potato tubers. Soon, it could be possible to precisely alter that sequence in a potato cell that can then be grown into a plant: “If I had a white potato I wanted to turn red, I could just edit one or two nucleotides and get the color I want.” Plant breeding “is not the art of shuffling genes around,” De Jong explains. “Basically, all potatoes have the same genes; what they have is different versions of the genes—alleles. And alleles differ from one another in a few nucleotides. If I can edit the few nucleotides, why breed for [a trait]? It’s been the holy grail in plant genetics for a long time.”
One problem with conventional genetic engineering techniques is that they add genes unpredictably. The desired gene is inserted into the targeted cell in a petri dish using either a plant bacterium or a “gene gun” that physically shoots a tiny particle covered with the DNA. Once the molecules are in the cell, the new gene is inserted into the chromosome randomly. (The transformed cell is grown in a tissue culture to become a plantlet and eventually a plant.) It’s impossible to control just where the gene gets added; sometimes it ends up in a spot where it can be expressed effectively, and sometimes it doesn’t. What if you could precisely target spots on the plant’s chromosome and add new genes exactly where you want them, “knock out” existing ones, or modify genes by switching a few specific nucleotides? The new tools allow scientists to do just that.
Talens, one of the most promising of these genome engineering tools, was inspired by a mechanism used by a bacterium that infects plants. Plant pathologists identified the proteins that enable the bacterium to pinpoint the target plant DNA and found ways to engineer these proteins to recognize any desired sequence; then they fused these proteins with nucleases that cut DNA, creating a precise “editing” tool. A plant bacterium or gene gun is used to get the tool into the plant cell; once inside, the proteins zero in on a specific DNA sequence. The proteins deliver the nucleases to an exact spot on the chromosome, where they cleave the plant’s DNA. Repair of the broken chromosome allows new genes to be inserted or other types of modifications to be made. Crispr, an even newer version of the technology, uses RNA to zero in on the targeted genes. With both Talens and Crispr, molecular biologists can modify even a few nucleotides or insert and delete a gene exactly where they want on the chromosome, making the change far more predictable and effective.
One implication of the new tools is that plants can be genetically modified without the addition of foreign genes. Though it’s too early to tell whether that will change the public debate over GMOs, regulatory agencies—at least in the United States—indicate that crops modified without foreign genes won’t have to be scrutinized as thoroughly as transgenic crops. That could greatly reduce the time and expense it takes to commercialize new varieties of genetically engineered foods. And it’s possible that critics of biotechnology could draw a similar distinction, tolerating genetically modified crops so long as they are not transgenic.
Dan Voytas, director of the genome engineering center at the University of Minnesota and one of Talens’s inventors, says one of his main motivations is the need to feed another two billion people by the middle of the century. In one of his most ambitious efforts, centered at the International Rice Research Institute in Los Baños, the Philippines, he is collaborating with a worldwide network of researchers to rewrite the physiology of rice. Rice and wheat, like other grains, have what botanists call C3 photosynthesis, rather than the more complex C4 version that corn and sugarcane have. The C4 version of photosynthesis uses water and carbon dioxide far more efficiently. If the project is successful, both rice and wheat yields could be increased in regions that are becoming hotter and drier as a result of climate change.
Rewriting the core workings of a plant is not a trivial task. But Voytas says Talens could be a valuable tool—both to identify the genetic pathways that might be tweaked and to make the many necessary genetic changes.
The pressure to help feed the growing population at a time when climate change is making more land marginal for agriculture is “the burden that plant biologists bear,” Voytas says. But he’s optimistic. Over much of the last 50 years, he points out, crop productivity has made repeated gains, attributable first to the use of hybrid seeds, then to the new plant varieties introduced during the so-called Green Revolution, and “even to the first GM plants.” The introduction of the new genome engineering tools, he says, “will be another inflection point.”
If he’s right, it might be just in time.
Heat Wave
For agronomists, plant breeders, and farmers, it’s all about yield—the amount a crop produces in a hectare. The remarkable increases in crop yields beginning in the middle of the 20th century are the main reason that we have enough food to go from feeding three billion people in 1960 to feeding seven billion in 2011 with only a slight increase in the amount of land under cultivation. Perhaps most famously, the Green Revolution spearheaded by the Iowa-born plant pathologist and geneticist Norman Borlaug substantially increased yields of wheat, corn, and rice in many parts of the world. It did so, in part, by introducing more productive crop varieties, starting in Mexico and then in Pakistan, India, and other countries. But for at least the past decade, increases in the yields of wheat and rice seem to have slowed. Yields of wheat, for example, are growing at roughly 1 percent annually; they need to increase nearly 2 percent annually to keep up with food demand over the long term. Agricultural experts warn that yields will have to improve for other crops as well if we are to feed a rapidly growing population—and yet rising temperatures and other effects of global climate change will make this tougher to achieve.
David Lobell, a professor of environmental earth system science at Stanford University, has a calm demeanor that belies his bleak message about how global warming is already affecting crops. The effects of climate change on agriculture have been widely debated, but recently Lobell and his collaborators have clarified the projections by combing through historical records of weather and agricultural production. They found that from 1980 to 2008, climate change depressed yields of wheat and corn; yields still rose during that time, but overall production was 2 to 3 percent less than it would have been if not for global warming. This has held true across most of the regions where corn and wheat are grown.
The finding is startling because it suggests that global warming has already had a significant impact on food production and will make an even bigger difference as climate change intensifies. “Anything that causes yield [growth] to flatten out is a concern,” says Lobell. And while overall yields of wheat and corn are still increasing, he says, “climate change becomes a concern long before you have negative yield trends.”
Even more disturbing, Lobell and his collaborator Wolfram Schlenker, an economist at Columbia University, have found evidence that in the case of several important crops, the negative effect of global warming is more strongly tied to the number of extremely hot days than to the rise in average temperatures over a season. If that’s true, earlier research might have severely underestimated the impact of climate change by looking only at average temperatures.
Schlenker’s calculations show steady increases in corn and soybean yields as the temperature rises from 10 °C into the 20s—but at around 29 °C for corn and 30 °C for soybeans, the crops are “hit hard” and yields drop dramatically. In subsequent work, Lobell showed that hot days were doing far more damage to wheat in northern India than previously thought.
Agricultural yields will have to improve if we are to feed a rapidly growing population.
A surprising and troubling detail of the research, says Schlenker, is that crops and farmers don’t seem to have adapted to the increased frequency of hot days. “What surprised me most and should inform us going forward,” he says, “is that there has been tremendous progress in agricultural breeding—average yields have gone up more than threefold since the 1950s—but if you look at sensitivity to extreme heat, it seems to be just as bad as it was in the 1950s. We need to have crops that are better at dealing with hot climates.” During the heat wave that hit much of the United States in 2012, he says, yields of corn were down 20 percent, and “2012 is not that unusual a year compared to what the climate models predict will be a new normal pretty soon.”
It’s possible that plants are simply hardwired to shut down at temperatures above 30 °C. Indeed, Schlenker says he’s not convinced that crops can be engineered to adapt to the increased frequency of hot days, though he hopes he’s wrong. Likewise, Lobell wants his work to better define which aspects of climate change are damaging crops and thus help target the needed genetic changes. But, like Schlenker, he is unsure whether genetics can provide much of an answer.
In California’s Central Valley, one of the world’s most productive agricultural areas, UC Davis’s Blumwald acknowledges that scientists have “never bred for stresses” like drought and heat. But he aims to change that. Inserting a combination of genes for tolerance to heat, drought, and high soil salinity into rice and other plants, Blumwald is creating crops that have at least some advantages during extreme weather conditions, particularly during key times in their growth cycle.
The challenge is to avoid reducing yields under good growing conditions. So Blumwald has identified a protein that activates the inserted genes only under adverse conditions. “There’s no cure for drought. If there’s no water, the plant dies. I’m not a magician,” he says. “We just want to delay the stress response as long as possible in order to maintain yields until the water comes.”
Daily Bread
A field just north of London on the grounds of Rothamsted Research, which bills itself as the world’s longest-running agricultural research station (founded in 1843), is one of the focal points of Europe’s continuing battle over genetically modified foods. The controversy here is over an 80-by-80-meter field of wheat, some of it genetically modified to produce a hormone that repels aphids, a common insect pest. In 2012, a protester climbed a low fence and scattered conventional wheat seeds among the GM plants in an attempt to sabotage the trial. The scientists at Rothamsted had the seeds vacuumed up, hired several extra security guards, and built a second fence, this one three meters high and topped with a curved overhang to keep it from being scaled. Later, a few hundred protesters marched arm in arm to the edge of the fenced-in field before they were stopped by the police.
The fuss at Rothamsted is just one hint that the next great GMO controversy could involve transgenic wheat. After all, wheat is the world’s most widely planted crop, accounting for 21 percent of the calories consumed globally. Meddling with a grain that makes the daily bread for countless millions around the world would be particularly offensive to many opponents of genetically modified foods. What’s more, wheat is a commodity grain sold in world markets, so approval of GM wheat in a leading exporting country would likely have repercussions for food markets everywhere.
Wheat is also emblematic of the struggles facing agriculture as it attempts to keep up with a growing population and a changing climate. Not only have the gains in yield begun to slow, but wheat is particularly sensitive to rising temperatures and is grown in many regions, such as Australia, that are prone to severe droughts. What’s more, wheat is vulnerable to one of the world’s most dreaded plant diseases: stem rust, which is threatening the fertile swath of Pakistan and northern India known as the Indo-Gangetic Plain. Conventional breeding techniques have made remarkable progress against these problems, producing varieties that are increasingly drought tolerant and disease resistant. But biotechnology offers advantages that shouldn’t be ignored.
“Climate change doesn’t change [the challenge for plant breeders], but it makes it much more urgent,” says Walter Falcon, deputy director of the Center on Food Security and the Environment at Stanford. Falcon was one of the foot soldiers of the Green Revolution, working in the wheat-growing regions of Pakistan and in Mexico’s Yaqui Valley. But he says the remarkable increases in productivity achieved between 1970 and 1995 have largely “played out,” and he worries about whether the technology–intensive farming in those regions can be sustained. He says the Yaqui Valley remains highly productive—recent yields of seven tons of wheat per hectare “blow your mind”—but the heavy use of fertilizers and water is “pushing the limits” of current practices. Likewise, Falcon says he is worried about how climate change will affect agriculture in the Indo-Gangetic Plain, the home of nearly a billion people.
Asked whether transgenic technology will solve any of these problems, he answers, “I’m not holding my breath,” citing both scientific reasons and opposition to GM crops. But he does expect advances in genetic technologies over the next decade to create wheat varieties that are better equipped to withstand pests, higher temperatures, and drought.
It is quite possible that the first and most dramatic of the advances will come in adapting crops to the shifting patterns of disease. And as Teagasc’s Ewen Mullins puts it, “if you want to study plant diseases, you come to Ireland.”
A hundred kilometers from the idyllic fields in Carlow, Fiona Doohan, a plant pathologist at University College Dublin, is developing wheat varieties that stand up to local diseases and trying to understand how plant pathogens might evolve with climate change. At the school’s agricultural experiment station, she uses growing chambers in which the concentration of carbon dioxide can be adjusted to mimic the higher levels expected in 2050. The experiments have yielded a nasty surprise. When wheat and the pathogens that commonly afflict it are put in the chamber with the increased levels of carbon dioxide, the plant remains resistant to the fungus. But when both are separately grown through several generations under 2050 conditions and then placed together, Doohan says, the plants “crash.” This suggests, ominously, that plant pathogens might be far better and faster than wheat at adapting to increased carbon dioxide.
Next to the building is an apple orchard with representatives of trees grown all over Ireland, including heirloom varieties that have been planted for centuries. Doohan looks at them fondly as she walks past, the ground covered by fallen apples. At the far end of the orchard is a row of greenhouses, including a small one in which genetically modified plants are tested. Inside is a particularly promising transgenic wheat that is proving resistant to the types of scab disease common in Ireland. The new gene is also increasing the plant’s grain production, says Doohan, who created the variety with her colleagues. She’s clearly delighted by the results. But, she quickly adds, there are no plans to test the GM wheat out in the field in Ireland, or anywhere else in Europe. At least for now, the promising variety of wheat is doomed to stay in the greenhouse.
Super spuds are coming.
A genetically modified potato that could resist destructive blight, defend itself against parasitic worms, avoid bruising, and cut down on the accumulation of a suspected carcinogen during cooking would be worth many billions of dollars per year to potato producers across the world. It could also serve as a model technology for addressing issues that affect many different crops and are increasingly likely to cause concerns about global food security as the population grows and the world’s climate becomes more unpredictable (see “Why We Will Need Genetically Modified Foods”).
This mega-resilient potato is the goal of a new project officially launched by researchers in the United Kingdom this week. If they are successful, this would be the first potato to have all these traits, each of which has already been demonstrated in previous genetically modified versions of popular potato varieties. The five-year endeavor will be led by Jonathan Jones, a scientist at Sainsbury Lab in the U.K. and one of the world’s leading experts on the genetics of plant diseases.
The potato Jones is aiming for will contain three genes his group has shown to confer resistance to late blight and two genes researchers at the University of Leeds have found to block infestation by a tiny worm called the potato cyst nematode. It will also have DNA the U.S. company J.R. Simplot used to engineer a potato variety, recently commercialized, that has fewer dark spots and contains less asparagine, a chemical that can cause the accumulation of a suspected carcinogen during high-temperature cooking.
Jones’s group has already engineered a blight-resistant potato, using a single gene it cloned from one found in a wild potato plant. For a commercial product, though, a single resistance gene will not be enough, he says, because it would likely lead to the emergence of pathogen strains resistant to that gene. Jones says an important objective of this project is to test the hypothesis that “stacking” multiple resistance genes can safeguard against this danger. His group found all three genes in wild potatoes.
Potatoes are a key staple crop all over the world. In terms of direct human consumption, they are among the top foods globally, along with wheat and rice. They are also quite susceptible to disease, particularly late blight, which led to the Irish potato famine in the mid-1800s. Caused by a fungus-like organism, it remains a “disastrous scourge” on potato crops, Jones says, and farmers in the U.K. must spray pesticide 15 times a year to combat it. The disease costs the U.K.’s potato industry more than $90 million per year. Globally, it costs some $5 billion.
Parasitic nematodes are a similarly massive economic drain on the potato industry in the U.K. and worldwide owing to the costs of pesticides and lost crops. Researchers from the University of Leeds are contributing DNA sequences to Jones’s new potato that will give it powerful weapons to fight the worms. The Leeds group has shown that introducing genes expressed only in the roots of the new potato should provide the crop with two distinct deterrents against them.
Bruising is another expensive problem. Since consumers prefer potatoes without dark spots, companies waste a huge amount of perfectly edible food. Simplot, which is helping to fund Jones’s project and contributing expertise and technology, recently gained U.S. regulatory approval to sell a potato containing DNA that cuts down on the amount of certain sugars responsible for bruising, as well as the amount of asparagine. Asparagine is responsible for the accumulation of acrylamide, which may increase the risk of certain cancers, during cooking.
To deliver the new DNA, Jones and his colleagues will use a well-established method called transformation, which takes advantage of a natural process by which bacteria transfer DNA to plants. Then they will use extensive screening and DNA analysis to identify a few potatoes that appear to have all the desired traits, and those will be tested in the field. “We want to get things in the field as soon as possible,” says Jones, who says the researchers should know within three years whether they have any lines worth commercializing.
If successful, says Jones, the project will illustrate the value of this technology as a way to make production more sustainable and address food security needs. The same general approach is applicable to other crops and can address other destructive diseases, such as wheat rust, he says.
Since it would have benefits to consumers, farmers, and the environment, “it sounds like they are developing the perfect potato,” says Ewen Mullins, a senior researcher at Teagasc, Ireland’s agriculture research agency. Mullins, who tests the environmental impact of novel plant breeding technologies, says the biggest challenges Jones’s group will face will probably not be technical. The science has progressed so much in recent years that it’s now “relatively straightforward” to develop an organism with this many new traits, he says, though there will be an extensive safety and regulatory process afterward. “The hard part is actually getting consumer acceptance for it,” Mullins says. That process, he adds, should ideally go on in parallel with the technology development.